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The six adiabatic elastic stiffness constants of bismuth have been determined at 301°K by an ultrasonic
pulse echo technique. The results are: ¢y, =63.5, c33=38.1, ¢5:=11.30, cg5=19.4, c1a=+7.23, and ¢;3=21.5,
all in units of 10'°d/cm?® These values were redundantly determined by the measurement of 14 different
velocities in four different single crystals of zone-purified bismuth. The velocities are believed accurate to
better than 19, the principal error arising from the uncertainty of the transducer transit time correction.
The moduli are in poor agreement with the previously determined static elastic compliance constants re-
ported by Bridgman. Some data on the velocity of sound in bismuth at 98° and at 4.2°K are also presented.

INTRODUCTION

f’IE acoustic determination of the adiabatic elastic
constants of bismuth reported here was instigated
in conjunction with measurements of the magneto
acoustic-resistance of bismuth.! These initial observa-
tions were not in agreement with static values reported
by Bridgman,? and, indeed, suggested that the latter
were in error. However, the initial values were not
redundant, nor even unambiguously determined. Be-
cause knowledge of the elastic constants is helpful in
the theoretical investigation of the electronic band
structure, the study was extended to provide more
definitive results.

The primitive cell of bismuth is a rhombohedron
(a=57° 41’) containing two atoms. The body diagonal
of the rhombohedron has threefold symmetry and this
trigonal axis is commonly designated as the z axis of
the crystal. The plane perpendicular to the trigonal
axis, containing the center of inversion, contains also
three twofold axes and three bisectrices. To specify the
other axes, we use the convention described by Cady,?
according to which, a positive y axis is-chosen to be
along the projection of one edge of the primitive cell
on the plane perpendicular to the [111] direction, and
the positive x axis is then chosen along the binary axis
which completes a right-handed orthogonal system.
Such a detailed specification of axes is required in
order to determine the sign of ¢y; unambiguously.

The six Voigt elastic constants for this class of crystal
(3m) may be represented schematically by the matrix,

‘i 12 C13 ey O 0
C12 cn ¢z —cu 0 0
C13 Ciz3 C33 0 0 0
coi=|f1 TCu 0 ciy O 0 (1)
0 0 0 0 Cyy Cug
Ciu—Cy2
0 0 0 0 Ci4
2
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1D. H. Reneker Ph)s Rev. 115, 303 (1939).

tP.W. Bndvman Proc. Acad. Arts and Sci. 60, 305 (19253).

IW. G. Cad\ Piezoelectricity (McGraw-Hill Book Company,
Inc., New York, 1946), p. 23.

We note in passing that according to the Laval-
Raman* formalism, as modified by Joel and Wooster *
a more extended representation is required owing to
their use of an unsymmetrical stress tensor. Previous
tests®? of this theory have been confined to piezoelectric
materials in which the issue is confused by complications

and experimental difficulties arising from electrome- -

chanical interactions. The symmetry in bismuth is
such that a direct test of the Laval-Raman theory may
be carried out in a simple manner, the test being limited
only by the accuracy of the velocity of sound measure-
ments used to determine the elastic constants.

EXPERIMENTAL PROCEDURE

The velocity of sound in the variously oriented
crystals was determined by the pulse echo techniquc
at 12 Mc using an apparatus previously described by
Lazarus."” The delay line of a Dumond 236D oscillo-
scope was used to measure the difference in arrival
time of successive echoes. The delay line was calibrated
frequently during the course of the measurements by
use of 10-usec markers.

The principal source of error in this type of measurc-
ment arises from uncertainty about the correction time
to be applied for the effective transit time in the trans-
ducer. This correction varies in magnitude depending
on the relative velocities and lengths of the crystal and
transducer. The acoustic mismatch at the crystal-trans-
ducer interface, which in turn is also a function of the
type and thickness of adhesive used, also produces™ 2
progressive distortion in the pulse shape of successive
echoes. The distortion depends on the phase of the sound
wave at the time of its incidence on the interface an!
thus depends on the frequency and length of the

crystal for a given orientation. McSkimin® has de-

4]. Laval, Compt. rend. 242, 2502 (1936); C. V. Raman a:
K. S sz“anathan Proc. Ind. Acad. Sci. 42, 1 (1955); 42. i
(1933)

5N. Joel and W. A. Wooster, Nature 182, 1078 (1938).

$Y. LeCorre, Bull. soc. fra.nq minéral et crist. 78, 1363 (1934

V. G. Zubov and M. M. Firsova, Kristallo rah\al 546 (1930 .

3N. Joel and W. A. Wooster, Acta Cryst. ‘il 375 (1‘):8)

9 H. Jaffe, Bull. Am. Phys. Soc. 4, 427 (1939).

1D "Lazarus, Phys. Rev. 76, 345 (194‘)

”S Eros and J. R. Reitz, J. Appl. Phys. 29, 683 (1938).

2 H. J. McSkimin, IRE Trans. on Ultrasonics Eng. PGUE 3.
25 (1957).
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ELASTIC CONSTANTS OF

veloped an ingenious resonant scheme for avoiding
+his inherent difficulty of the pulse echo technique.
[n our case, the errors were reduced to a minimum by
the empirical procedure of determining the time interval
petween echoes with and without a dummy transducer
attached to the reflecting end of the sample. The change
in time interval produced by addition of the dummy
was used to estimate the effective transit time correction
for the identical driving transducer. The transit time
correction so determined varied between 0.02 and 0.06
usec. Most of the samples employed in these measure-
ments were somewhat over 1 cm in length. Hence, the
correction at most is of the order of 1% in velocity.

The bismuth single crystals were cut from a zone
refined bar whose impurity concentration is estimated
to be about 1 ppm. The crystal blocks approximately
1X2 in. in cross section were ground so their ends were
flat and parallel to within 0.0001 in.

Most of the measurements of sound velocity were
made at room temperature, actually 301°K. No effort
was made to control the temperature accurately because
of the small temperature coefficients of the elastic
constants. Measurements made at helium and liquid
nitrogen temperatures ‘were made using the cryostat
previously described by Reneker.!

The orientation of the crystals was determined to
within #1° by the standard Laue back reflection x-ray
technique. The problem of ascertaining the directions
of the positive x and positive y axes in the crystal was
resolved as follows. One notes that on a stereographic
projection, such as that given by Vickers® for the
larger rhombohedral unit cell containing eight atoms
per_unit_cell, the three positive x axes point in the
[011], [101], and [110] directions and the three posi-
tive y axes point in the [211], [121], and [112] direc-
tions. For crystals not oriented along principal axes,
we specify the orientation by polar angles 6 and ¢,
where 8 is the angle between the direction of propaga-
tion and the s axis and ¢ is the angle between the x3
plane and the plane containing the s axes and the
propagation direction. In our case, we are concerned
only with #=45°, and ¢==:90°. The differentiation
between =-+90° and = —90° is based on the fact that
for ¢=—90° a very strong reflection corresponding
to the (100) planes in Vicker’s diagram occurs 11.5°
from the center of the Laue picture. No such strong
reflection occurs for ¢=-490°. In addition, the identi-
fication may be checked by the occurrence of a relatively
strong spot on the ¢=+90° picture corresponding to
the (111) planes at an angular distance of about 26.3°
from the center.

RESULTS

Fourteen independent velocities were measured at
room temperature on an X-cut, a Y-cut, a f=43°,
e=+490° and a #=45°, ¢=—90° crystal. The veloci-
ties are given in Table I. Using the method described

13\, Vickers, J. Metals 9, 827 (1957).
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TasLe L. Observed velocities of sound on bismuth at 301°K.

Direction of Velocity in
Symbol propagation 10% cm/sec Mode
0 x axis 2.540+0.022 Longitudinal
Ta x axis 1.350-40.009 Fast shear
73 x axis 0.85040.004 Slow shear
0y y axis 2.57140.018 Longitudinal
5 v axis 1.40740.009 Shear polarized
along x
g y axis 1.0224-0.006 Shear polarized
along y
7 7 axis 1.97240.015 Longitudinal
3 7 axis 1.074£0.011 Degenerate
shear®
Uy 0=45°, =-490° 2.082+0.019 Longitudinal
V10 6=45°, =--90° 1.522:+0.017 Shear polarized
along x
m =45°, =-4+90° 1.15020.006 Shear polarized
along =95°
V12 6=45°, =-—90° 2.44140.041 Longitudinal
13 6=45°, =-—90° 0.910+0.003 Shear polarized
along x
14 6=43°, =-—90° 1.055+0.006 Shear polarized

along 135°

2 Owing to the degeneracy of the shear modes of propagation along the
trigonal axis, internal conical refraction occurs and the transmitting
crystal must be laterally displaced with respect to the receiving crystal in
order to detect the pulses.

by Mason,* we may relate these velocities to the elastic
constants by the equations!®17:

pv¥=cn (2
pUst=ces=3(cu1—C12) ‘ 3
P =Cu )
PP =C33 4)
pr15*=15 (Costcas) —Cus (6
p7-'102=%(656+644)+614 (M

pra? =3[ (costcse)+{ (544“556)2'1'45142}}] 8)
p1'32= %[(Css'i'cu) = { (544_566)2+45142} *] (9)
pl'42=%[(6u+544)+{(644“611)2‘['46142}%] (10)
pve2=3[ (crrtes) — { (cas— cu)* 4}l (1)

These are the equations which we have used to de-
termine all the constants, except ¢i;. In addition, we
have four additional relations

2p'l‘122= % (Cu+Czs) +cutcut { (%Cu— %Cu:ﬁ"cu)?

+ (csteuta))t (12)
2P'L’142 = -% (Cll+c33) “+cytc1s— { (%—cu—. ’%533+CH)2
+ (ctecutea)}t (13)

U\, P. Mason, Physical Acoustics and the Properties of Solids
(D. van Nostrand Company, Inc., Princeton, New Jersey, 1958),
p. 368.

15 These formulas have also been given by Bhimasenacker but
are repeated here because there are some typographical errors in
his paper. Some formulas derived in the manner described by
Mayer and Hiedemann are slightly different, apparently because
they neglect certain nonzero off diagonal matrix elements of Eq.
(1)'in deriving their Eq. (7).

15 J, Bhimasenacker, Proc. Ind. Acad. Sci. A29, 200 (1949).

173y, G. Mayer and E. A. Hiedemann, Acta Cryst. 12, 1 (1959).
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TasLe II. Comparison of adiabatic elastic stifiness and com-
pliance constants with isothermal values measured by Bridgman.
The values in parentheses are calculated adiabatic values.

Elastic constants of Bi

Echo method d/cm? Bridgman d/cm?

Cui = 63.5 X10v 62.9 X10w
(63.3)

Ci2 24.7 X 10w 35.0 X10w
(35.56)

Cis 24.5 X 10w 211 Xi0w
(21.6)

Css 38.1 X 10w 4.0 X100
(44.35)

Cus 11.30X 101 10.8410%

Cus +7.23X 109 —4.23X 10"

Cas 19.40 X 10w 13.87 X 10w

Sn 27.8 X108 269 X101

Sia —10.2 X108 —140 X108

Sz —11.3 X101 —6.2 X101

Sis 40.8 X101 28.7 X101

Su 130.7 X10~13 104.8 X101

S —244 X101 16.0 X101

Sss 76.0 X101 81.2 X101

2p'l‘92= % (Cu+Csa) +cu—cut { (%Cu— %C:s::— 614)?

: +(cuteu—a)?} (14)
2P1‘112= % (%Cu-{—%cs,’;'*-(:u— C“) — { (%c“— %633—614)2
+(csteu—caw)?}, (15)

which have been used to determine ¢y3. The error in the
latter is larger than for the other five constants since
the error in constants derived solely from crystals not
oriented along principal axes is inherently larger, being
proportional to the error in misorientation rather than
to the square as for a crystal oriented along principal
axes.

If one proceeds to insert the measured velocities in
Eq. (2) to Eq. (15) to determine the elastic constants,
one should have eight redundant checks because there
are only six unknowns and 14 equations. In particular,
the trace of the Christofel determinant for the X-cut
crystal (i.e., v4v’+1?) should equal that for the

[-cut crystal vP-v>+0¢. The two observed traces
are 9.380X 10" cm?/sec? and 9.6534X10" cm?/sec?,
respectively. Similarly, the traces of ¢=-490° and
¢=—90° crystals should be equal. In this case, the
observed values are 7.974X 10" cm?/sec? and 7.899 X 10*
cm?/sec?, respectively. Further checks of similar nature
are easily made by considering sums and differences of
pairs of equations such as Eq. (6) and Eq. (7).

QOur actual procedure was somewhat different. The
values of ¢y, €33, ces, €11, and c14 were calculated from
from Eq. (2)-Eq. (11). The value of ¢;; was then

. slightly readjusted within the experimental error to

improve the over-all agreement with all the equations.
No effort was made to use a least-square procedure in
view of the labor involved. The values of these constants
so determined are given in Table II. The value of cy3
is determined by solution of Eq. (12)-Eq. (13). One
obtains two solutions for each pair of the four equations.
The two pairs of equations have only one common root,

LAWSON,

AND RENEKER

however, and only this root will yield a positive volum.
compressibility. This value is also given in Table 11,

It should be noted that the sign of ¢4 is positive
because of the convention adopted in defining our axes,
For problems involving only the propagation of soun,
this convention is of no importance. However, when
one desires to investigate the interaction of these
sound waves with electrons, it is imperative that the
sign convention adopted for designating the elastic
properties be the same as that for describing the Fermj
surface of the carriers. We have adopted Cady’s con-
vention because of its widespread use in the description
of quartz crystals. ,

The values of the elastic constants reported in Table
IT satisfy all the stability requirements on the lattice.
These conditions are easily derived by requiring the
determinant of the elastic constants, corresponding to
the matrix of Eq. (1), and all its principal minors, be
positive in the manner described by Alers and Neigh-
bors.’® In calculating the elastic constants, the density
of bismuth was taken to be 9.80 g/cm?® in accordance
with the latest precision determination of the lattice
parameters by Barrett."

In addition to the measurements at room tempera-
ture, all the elastic constants except ¢;3 were determined
also at the boiling point of liquid N, and of liquid He.
These values are given in Table III. Corrections for the
change in length of the bismuth with temperature were
made with the thermal expansion data of Erfling.*® The
determination of ¢y3 as a function of temperature was
not carried out owing to the high uncertainty.

DISCUSSION

In Table II, for purposes of comparison with our
values, we have recorded the static values of the elastic

TasLe III. Temperature dependence of the elastic constants
in units of 10" d/cm?.

300°K 80°K 4.2°K
cn 63.5 68.6 68.7
€33 38.1 40.6 40.6
Cis 113 12.7 12.9
Cyo 19.4 224 22.5
C1s 7.23 8.05 8.44
€13 215 wiere. P

TasLE IV. Comparison of adiabatic linear and
volume compressibilities.

Echo technique Bridgman®
cm?/d cm?*/d
K, 18.16X 10~ 16.13X 1071
K, 6.28 6.59
< 29.31

K, 30.7

2 Calculated from adiabatic values.

¥ G. P. Alers and J. R. Neighbors, J. Appl. Phys. 28, 1514

(1957)
¥ C. S. Barrett, Australian J. Phys. (to be published).
® H. D. Erfling, Ann. Physik 34, 136 (1939).
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ELASTIC :CONST

compliance constants s;; determined many years ago
by Bridgman.? The s;; determined by Bridgman are
iothermal values; the ¢;; values reported here are
adiabatic. We have, therefore, converted Bridgman’s
values of s;; to isothermal Cij by inverting the matrix of
Eq. (1), and thence to adiabatic ¢;;, by use of thermo-
dynamic formulas of the standard type.*' These values

are also given in Table IL. Finally, we have inverted '

our ¢;; matrix to obtain adiabatic s;; which within ex-

pmmental error are the same as the isothermal values.
It is to be noted that our values of the ¢;; obtained by
inverting Bridgman’s s;; are materially different from
those reported by Betts e/ al.®

We focus attention on the comparison of our adia-
batic measured values of ¢;; with the adiabatic values
of the ¢;; computed from Bridgman’s static s;,. Several
large discrepancies, far larger than the combined
estimated experimental errors, are apparent for ¢33 and
2. The origin of these discrepancies is difficult to
ascertain. However, we note that Bridgman’s values
are only partially redundant, that several of his samples
were reported as polycrystalline, and that the purity
of his samples was dubious. We suspect a gross orienta-
tional error® (perhaps concealed as an occluded grain
or an unnoticed twin) in one or more of his crystals.
The discrepancy in the sign of ¢4 is only apparent and
arises presumably because of a difference between
Bridgman’s unspecified axis convention and that used
here.

A more rewarding comparison (see Table IV) is
afforded by the agreement between Bridgman’s directly
observed adiabatic volume compressibility and that cal-
culated from our data: the former is 29.3X10~% cm?/d
and the latter, 30.7X 107" c¢m?/d. The difference be-
tween these two values is well within the combined
experimental error.

dy dp dy3 dy
dy —du —dy
dsy 0

X.'_,'=

NTS OF BISMUTH

We turn now to the question of whether the Voigt
theory provides an adequate description of the elastic
properties of bismuth. In view of the numerous re-
dundant checks, the answer must certainly be affirma-
tive to within the accuracy of our experiments. How-
ever, in view of the existing uncertainty over the
applicability of the Laval-Raman theory ‘to various
crystals, it might be worthwhile to set some quantitative

limits on the permitted deviations from the Voigt

framework, at least, as applied to bismuth.

Briefly, the difference between the Voigt and the
Laval-Raman theory may be stated as follows. The
Voigt theory considers the case of a static (or homo-
geneous) strain in which the strain tensor may be
separated into symmetric and antisymmetric com-
ponents. The latter correspond to rigid body rotations
which invoke no stress. The stress tensor may then be
proved symmetric. In a dynamic and, consequently,
inhomogeneous strain, the rotational part of the dis-
placement has a spatial variation and, hence requires
torques to sustain the changes in angular momentum.
It is therefore impossible to demonstrate that the stress
tensor is symmetric. In the most general case, one
requires 43 constants to relate the stress to the strain,
after imposing exactness conditions, rather than 21
censtants as in the Voigt theory. Wooster has shown
that this number is further reduced by compatibility re-
quirements to 39 constants. This number of constants is
further reduced by the requirements of crystal sym-
metry so that for the simplest crystal classes (e.g.,
isotropic materials), there is no difference between the
two theories.

Particularizing to the case of Bi, one finds that eight
constants are required to specify the relation between
stress components X;; and strain components x;;. In
fact 242

dis 0 0
—d15 0
[§ [ 0 0
dyst+dss
0 il ‘
Yij. (16)
d44+d5$
55 s e 15 15
2
d55 dH dH
dss d65
dss

M See J. F. Nve, Physical Properties of Crystals (O\ford University Press, Oxford, England, 1957), p 283
2 D.D. Betts, A. B. Bhation, and G. K. Horton, Phys. Rev. 104, 43 (1936).
HThe dlscrep'mcx between the value for Vs previously repnrted by one of us and that in Table IT was owing to a “‘false” trigonal

axis being mislabeled in a Laue pattern.

% Note that this matrix “differs slightly from that given by Raman and Viswanathan owing to a misprint in their article. We

hm-e used their notation which differs from that of LeCorre.
%Y. LeCorre, Bull. Soc. franc. Mines. Crist. 70, 80 (1957).
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The Christofel determinantal equation for the velocities
of propagation along the x axis of bismuth is

du—pt® 0 0
0 dw—p® dy |=0, (17)
0 dis .d,r,,r,— pr?
and that for propagation along the y axis of bismuth is
des—pv* 0 0
0 du—p —di [=0.  (18)
0 —dyis  dss—pt?

These particular cases are quite simple and differ from
the corresponding equations for the Voigt theory in

~ that ds; replaces ¢y and dy; replaces ¢y

JOURNAL OF APPLIED PHYSICS
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From Eq. (17), we have

dsst+dss = pro’+pus’ (19)
and, from Eq. (18)
dy+dss=prd+pre’. (20;

Furthermore, dy1=¢yy and des= css.

The sum, vy’ 475" —v5*, is 1.145£0.034 X 10" cm?/sec?,
which is to be compared with the directly observed v,
1.153-£0.017 X 10" ¢m?/sec?. It is clear that dyy and d;,
cannot differ by more than 49,. Equation (20) does
not yield as small an estimate for the possible difference
between dys and ds; owing to the large error introduced
by the uncertainty in cy;.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge partial support of
this work from the Office of Naval Research and the
National Science Foundation.

SEPTEMBER, 1960

Dislocations in Indented Magnesium Oxide Crystals
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Dislocation rosette patterns produced by spherical and pyramidal indentors on the cleaved surfaces of
magnesium oxide crystals were studied in detail. The three-dimensional arrangement of dislocation loops
as deduced from the two-dimensional etching patterns is discussed. Cracks formed on {110}, planes around
pyramidal indentations are believed to be due to the interaction of dislocations on {110};; planes. The
temperature dependence of hardness was found to be related to the widening of dislocation bands, rather than
to the distance of travel of leading dislocations. Some observations were also made on the pinning of dis-
locations and recovery at elevated temperatures, and on the interaction of dislocations with grown-in

subboundaries.

INTRODUCTION

HE indentation hardness test is probably the
simplest method of measuring the strength of
materials. However, it is also the least understood test
in terms of stress and strain distribution. Some progress
has been made in analyzing the stress and strain distri-
butions of several types of indentations using the con-
tinuum theory of plasticity.! However, the results can-
not be applied directly to crystalline solids having
well-defined slip systems.

In the last decade, a few attempts have been made
to study the deformation mechanism associated with
indentation. Tolansky and Nickols® studied several
matrials by means of multiple-beam interference micros-
copy. Churchman, Geach, and Winston? investigated

L R. Hill, The Mathematical Theory of Plasticity (Oxford Uni-
versity Press, New York, 1930).

2S. Tolansky and D. G. Nickols, Nature, 164, 113 (1949); Phil.
Mag. 43, 410 (1952); Nature 164, 840 (1949).

3A. T. Churchman, G. A. Geach, and J. Winston, Proc. Roy.
Soc. (London) A238 194 (1956).

materials with a diamond structure. Smakula and Klein'
used a prismatic punching method to study glide in
ionic crystals. Votava, Amelinckx, and Dekeyser® em-
ployed an interferometric method to study indentation
figures on cleavage faces of mica and NaClL

With the advancement of dislocation theory and tech-
niques of revealing dislocations in crystals in the past
few years, it was thought possible to attain a better
understanding of the deformation caused by indentation
of a material with a simple crystalline structure. In
this investigation, dislocation etching technique®” was
used to study the dislocation structures associated with
various types of indentations at various temperatures
in magnesium oxide crystals. This type of study may

4+ A. Smakula and M. W. Klein, Phys. Rev. 84, 1043 (1951).

s E. Votava, S. Amelinckx, and W. Dekeyser, Acta Met. 3, 89
(1935). y

§ J. Washburn, A. E. Gorman, and E. R. Parker, Trans.
A. I. M. E. 215, 230 (1959).

TR. J. Stokes, T. L. Johnston, and C. H. Li, Trans.
A. L M. E. 215, 437 (1959). \
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