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Elastic Constants of Bismuth 
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The 'six adiabatic elastic stittness constants of bismuth have been determined at 301°K by an ultra~nic 
pulse echo technique. The results are: c1l=63.5, C33=38.1, c,,=11.30, C66=19A, c,,=+7.23, and cll=2·L5, 
all in units of 1010 d/ cm'. These values were redundantly determined by the measurement of 10l different 
velocities in four different single crystals of zone-purified bismuth. The velocities are believed accurate to 
better than 1%, the principal error arising from the uncertainty of the transducer transit time correction. 
The moduli are in poor agreement with the previously determined static elastic compliance constants re
ported by Bridgman. Some data on the velocity of sound in bismuth at 98° and at ol.2°K are also presented. 

INTRODUCTION 
/ 

T HE acoustic determination of the adiabatic elastic 
constants of bismuth reported here was inst igated 

in conjunction with measurements of the magneto 
acoustic-resistance of bismuth. 1 These initial observa
tions were not in agreement with static values reported 
by Bridgman,2 and, indeed, suggested that the latter 
were in error. However, the initial values were not 
redundant, nor even unambiguously determined. Be
cause knowledge of the elastic constants is helpful in 
the theoretical investigation of the electronic band 
structure, the study was extended to provide more 
definiti\'e results. 

The primitive cell of bismuth is a rhombohed ron 
(a=57° 41') containing two atoms. The body diagonal 
of the rhombohedron has threefold symmetry and this 
trigonal axis is commonly designated as the z axis of 
the crystal. The plane perpendicular to the trigonal 
axis, containing the center of inversion, contains also 
three twofold axes and three bisectriccs. To specify the 
other axes, we use the convention described by Cady,3 
according to which, a positive y axis is · chosen to be 
along the projection of one edge of the primitive cell 
on the plane perpendicular to the [111J direction, and 
the positi\'e x axis is then chosen along the binary axi's 
which completes a right-handed orthogonal system. 
Such a detailed specification of axes is required in 
order to determine the sign of CH unambiguously. 

The si.\': Voigt elastic constants for this class of crYiital 
(3m) may be represented schematically by the matrix, 

I
CIl CI2 eu CI4 0 lJ 
CI~ Cll CI3 - CI~ 0 0 
C13 C13 C33 0 0 0 

Cij= Cu -Cu 0 CH 0 0 (1) 
o 0 0 0 CH Cu 

o 0 0 0 C14 Cll~Cltl 

~ell Telephone Lahoratories Predoctoral fello\\'. 
t National Science foundation Predoctoral Fellow. )io\\' at 

Polychemicals Depar tment, E. 1. du Pont de Nemours and 
Company , \\'ilmington, Delaware. 

I D. H . Reneker, Phys. Rev. 115,303 (1959). 
• P. W. Bridgman, Proc. Acad .. -\.rts and Sci. 60,305 (1925). 
3 W. G. Cady, Pie-=oeleclricily (:\rcCra\\'-Hill Book Company , 

Inc. , X C\\' York, 19o16), p. 23. 

We note in passing that according to the Lanl
Raman4 formalism, as modified by Joel and Wo05kr: 
a more extended representation is required owing III 

their use of an unsymmetrical stress tensor. Previolh 
tests6-9 of this theory have been confined to piezoelecl ric 
materials in which the issue is confused by complicatiun, 
and experimental difficulties arising from electromL'
chanical interact ions. The symmetry in bismuth i, 
such that a direct test of the Laval-Raman theory may 
be carried out in a simple manner, the test being limi ted 
only by the accuracy of the velocity of sound measure
ments used to determine the elastic constants. 

EXPERIMENTAL P~OCEDURE 

The velocity of sound in the variously oriented 
crystal' was determined by the pulse echo techniqut: 
at 12 :'IIc u:;ing an apparatus previously described by 
Lazarus. tO The delay line of a Dumond 256D oscillo
scope was used to measu re the difTerence in arri"al 
time of successive echoes. The delay line was calibrated 
frequently during the course of the meaSllrements by 
use of lO-~sec markers. 

The principal source of error in this type of measure
ment arises from uncertainty about the correction time 
to be applied for the effective transit time in the tn1lb
ducer. This correction varies in magnitude depend ill~ 
on the relati\'e velocities and lengths of the crystal and 
transducer. The acoustic mi match at the crystal-trall'
ducer interface, which in turn is also a function of tht' 

type and thickness of adhesive used, also producesll ;1 

progressive distortion in the pulse shape of sllcces,;i\'L' 
echoes. The di tortion depends on the phase of the sound 
wave at the time of its incidence on the interface an. ! 
thus depends on the frequency and length of til l' 

crystal for a given orientation. M cSkimin l2 has dl ' 

4 J. Laval, Compt. rend. 2-12, 2502 (t956) ; c. V. Raman a . 
K. S. Viswanathan, Pmc. Ind. Acad . Sci. 42, 1 (1955)' ·12 . 51 
(1955). ' 

5 N. Joel and \\'. A. \Vooslcr, Nature 182, 1078 (1958). 
5 Y. LeCorre, Bull. soc. fran<;. mineral et crist. 78, 1363 ( 1').;; 
'1 V. C. Zubov and 1\[. M. Firsova , Kristallograom l , 5-l6 (11).'11 . 
8)i. Joel and \\' .. -\.. Wooster, Acta Crysl. 11,575 (1958) . 
9 H . Jaffe, Bull. .\m. Phys. Soc. 4, -l27 (1959). 
10 D. Lazarus, Phys. Rev. 76, 5ol5 (1949). 
II S. Eros and J. R. Reitz, J. :\ppl. Phys. 29, 683 (1953 ). 
l! H. J . ~fcSkimin, IRE Trans. on Ultrasonics En". PcrF. 5. 
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\'eloped an ingenious resonant scheme for avoiding 
this inherent diffi culty of the pulse echo technique. 
In our case, the errors \\"ere reduced to a minimum by 
the empirical procedure of determining the time interval 
bct\\-een echoes with and \\'ithout a dummy transducer 
attached to the reflecting end of the sample. The change 
in time interval produced by addition of the dummy 
\I'as used to est ima te the effective transit time correction 
for the identical driving transducer. The transit time 
correc tion so determined varied between 0.02 and 0.06 
~;;ec. ~Iost of the samples employed in these measure
ments were somewhat over 1 cm in length. Hence, the 
correction at most is of the order of 1% in velocity. 

The bismuth single crystals \\-ere cut from a zone 
refined bar whose impurity concentration is estimated 
to be about 1 ppm. The crystal blocks approximately 
1 X! in. in cross sec tion were ground so their ends were 
flat and parallel to within 0.0001 in. 

l\Iost of the measurements of sound velocity were 
made at room temperature, actually 301°K. Xo effort 
was made to control the temperature accurately because 
of the small temperature coefficients of the elastic 
constants. M easurements made a t helium and liquid 
nitrogen temperatures ' were made using the cryostat 
previously described by R eneker. 1 

The orientation of the crystals was determined to 
within ±1° by the standard Laue back reflect ion x-ray 
technique_ The problem of ascertaining the directions 
of the positive x and po-itive y axes in the crystal was 
resolved as follows. One notes that on a stereographic 
projection , such as that given by Vickers'3 for the 
larger rhombohedral uni t cell containing eight atoms 
per uni t cell, the three positiye x axes point in the 
[01 TJ, [T0l], and [1 TOJ directions and the three posi
tive y axes point in the [211J, [121J, and [112J direc
tions. For crystal s not oriented along principal axe-, 
we specify the orientation by polar angles () and <;, 

where () is the angle between the direction of propaga
tion and the zaxis and <p is the angle bet\\'een the xz 
plane and the plane containing the z axes and the 
propagation direc tion . In our case, we are concerned 
only with 8=45°, and <,O=±90°. The differentiation 
between = +90° and = - 90° is based on the fact that 
for <,0= - 90° a very strong reflection corresponding 
to the (100) planes in Vicker's diagram occurs 11.5

0 

from the center of the Laue picture. No such strong 
reflection occurs for <,0= +90°. In addition, the identi
fication may be checked by the occurrence of a relatively 
strong ~ot on the <,0= +90° picture corresponding to 
the (111 ) planes at an angular distance of about 26.5

0 

from the center. 

RESULTS 

Fourteen independent velocities were measured at 
room temperature on an X-cut, a V-cut, a ()=15°, 
<,0= +90°, and a ()=15°, r.p= -90° crystal. The veloci
ties are given in T able I. Using the method described 

13 W. Vickers, ] . :\Ietals 9, 827 (1957). 

TABLE 1. Obscn'ed velocities of sound on bismuth at 301°K. 

Direc tion of Velocity in 
Symbol propagation 10 5 em/ sec ~[ode 

V, x axis' 2.5-l0±0.022 Longitudinal 
t':! x axis l.550±0.009 Fast shear 
V3 x ax.is 0.850±0.00-l Slo\\' shear 
Vt yaxis 2.571±0.01 8 Longitudinal 
tis ya;\;s 1.407 ±0.009 Shear polarized 

along x 
1.022±0.006 Vs yaxis Shear polarized 

along y 
z axis 1.972±0.015 V7 Longitudinal 

Us z axis 1.07-t±0.011 Degenerate 
shear" 

Vg //=45 °, =+90° 2.082±0.019 Longitudinal 
'DIO //=45 °, =+90° l.522±0.017 Shear polarized 

along x 
8=45°, =+90° VII 1.150±0.OO6 Shear polarized 

along 8=95° 
8=45°, = _90° 2.411±0.041 VI:! Longitudinal 

tl13 8=45°, = -90° 0.910±0.003 Shear polarized 
along x 

'D14 8=-l5°, =_90° 1.055±0.006 Shear polarized 
along 135° 

.' Owing to t he degeneracy of the shear modes of propagation a long the 
tngonai axis. in ternal conical refraction occurs and the tran..smitting 
crystal must be laterally displaced with resrect to the receiv ing crystal in 
order to detect the pulses. 

by Mason,14 we may relate these velocities to the elastic 
constants by the equationsI5- 11 : 

~~=Cll (~ 

pV;2= C66=Hcll- C1Z) (3) 

pi'82 =C~4 (4) 

~=~ ~ 
pt' l}=Hc66+CH) -C14 (6) 

p1'102= HC66+CH) + C14 (7) 

pvz2= ![ (C66+ C .. )+ { (Ct~ - C66)z+ 1cln 1J (8) 

pt'32=![(C66 +CH) - { (CH- C66r+1cln !J (9) 

PV42 = ![(Cll+CH) + { (C~~ -Cll)2+ 4cli )!J (10) 

pV62 = ![ (Cll+CH) - {(CH- Cll)2+1c142}1]. (11) 

These are the equations which we have used to de
termine all the constants, except C13. In addition, we 
have four additional relations 

2pt'122 = HCll+C33)+C44+CH+ {aCll-tcn+C(4)2 
+ (C13+ CH+CH)2} I (12) 

2pVH2 = HCll +C33) +CH+CH - {(tCll"": t C33+C14)2 
+ (C13+ C44+CHn l (13) 

14 W. P . :\Iason, Physical Acollstics alld tile Properties of Solids 
(D. van Nostrand Company, Inc., Princeton, New J ersey, 1958), 
p.368. 

15 These formulas have also been given by Bhirnasenacker but 
are repeated here because there are some typographical errors in 
his paper. Some formulas deri\'ed in tbe manner described by 
Mayer and Hiedemann are slightly different, apparent ly because 
they neglect certa in no nzero off diagonal matrix elements of Eq. 
(1) in deriving their Eq. (7). 

16 J. Bhimasenacker, Proc. Ind. Acad . Sci. A29, 200 (19-l9). 
17 W. G. ~Iayer and E . .-\ . Hiedemann, .-\ cta Cryst. 12, 1 (1959) . 
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TABLE II. Comparison of auiabatic elastic stiffness and com
pliance constants with isothermal values mea ured by Bridgman . 
The values in parentheses are calculated adiabatic values. 

Elastic constants of Bi 
Echo method d/cm~ Bridgman d/cm2 

CII 63.5 X 10' 0 62.9 XlOlO 
(63.3) 

C" 24.7 X 1010 35.0 XlO lO 

(35.56) 
Cn 24.5 X 10'0 21.1 XlO lO 

(21.6) 
C" 38.1 X10'° 4-1.0 XlO'° 

(4-U5) 
CH 1 1.30 X 10' 0 1O.8-lX10'° 
C" +7.23XlOlO -4.23XI01O 
Ca6 19.40 X 10'0 13.87XlO lO 

5 11 27.8 X 10-13 26.9 XIO-1J 
5 12 - 10.2 X 10- 13 -1-l.0 XlO-13 
513 -11.3 X 10-13 -6.2 X1!r'3 
5 33 -!O.8 X 1!r13 28.7 X 10- 13 

5 •• 130.7 Xl!r' 3 10-l.8 X 1!r13 
Su - 2-l.4 X 1!r'3 16.0 XlO-13 
Su 76.0 XlO- 13 81.2 X 10-13 

2pt'9~=! (Cll+C33)+CH-CH+ {(!ClI-!C3;J-C14r 

+ (CU+ CH-C!4)2} I (14) 

2pt'll2=H!Cll+!Cn+CH-Cll)- {(tCll-!C33- CH)2 

+ (C13+ C44- Cll)2) l, (15) 

which haw been used to determine C13 . The error in the 
latter is larger than for the other five constants since 
the error in constants derived solely from crystals not 
oriented along principal axes is inherently larger, being 
proportional to the error in misorientation rather than 
to the square as for a crystal oriented along principal 
axes. 

If one proceeds to insert the measured velocities in 
Eq. (2) to Eq. (15) to determine the elastic constants, 
one should have eight redundant checks because there 
are only six unknowns and 14 equations. In particular, 
the trace of the Christofel determinant for the X-cut 
crystal (i.e., V12+t'2~+t'i) should equal that for the 
Y-cut crystal ~'42+t' 52+l'62. The two observed traces 
are 9.580X 1010 cm2t sec2 and 9.654X 1010 cm2/ sec2, 

respectively. Similarly, the traces of rp= +900 and 
rp= -900 crystals should be equal. In this case, the 
observed values are 7.974 X 1010 cm2/ sec2 and 7.899X 1010 

cm2/sec2, respectively. Further checks of similar nature 
are easily made by considering sums and differences of 
pairs of equations such as Eq. (6) and Eq. (i). 

Our actual procedure was somewhat different. The 
values of Cll, C33, CS6, C44, and Cu were calculated from 
from Eq. (2)-Eq. (11). The value of C\1 was then 
slightly readjusted within the experimental error to 
improve the over-all agreement \vith all the equations. 
No effort was made to use a least-square procedure in 
view of the labor involved. The values of the e constants 
so determined are given in Table II. The value of Cn 

is determined by solution of Eq. (12) - Eq. (15). One 
obtains two solutions for each pair of the four equations. 
The two pairs of equations have only one common root, 

hO\\'ever, and only this root will yield a po~itive \,Ollllll t. 
compressibility . This value is also given in Table n. 

It should be noted that the sign of CI4 is positi\'c 
because of the connntion adopted in defining our ax l' ~. 
For problems im'olying only the propagation of sound , 
this convention is of no importance. However, whl:11 
one desires to inn:stigate the inleraction of the,; \: 
sound waves with electrons, it is imperative that tht 
sign convention adopted for designating the ela lie 
properties be the ~ame as that for describing the Ftrmi 
surface of the carriers. "-e have adopted Cady's COI1-
vention because of its widespread use in the description 
of quartz crystals. . 

The values of the elastic constants reported in Table: 
II satisfy all the stability requirements on the lattice. 
These conditions are easily derived by requiring the 
determinant of the elastic constants, corresponding to 
the matrix of Eq. (1), and all its principal minors, be 
positive in the manner described by Alers and ?\cigh
bors.1> In calculating the elastic constants, the density 
of bismuth was taken to be 9.80 g/cm3 in accordance 
with the latest precision determination of the lattice 
parameters by Barrett. 19 

In addition to the measurem'ent s at room tempera
ture, all the elastic constants except C13 were determined 
also at the boiling point of liquid ?\2 and of liquid H e. 
These value are gi\'en in Table III. Corrections for the 
change in length of the bismuth with temperature were 
made with the thermal expan ion data of Erfling.20 The 
determination of C13 as a function of temperature wa~ 
not carried out owing to the high uncertainty. 

DISCUSSION 

In Table II, for purposes of comparison with our 
values, we have recorded the static values of the elastic 

TABLE III. Temperature dependence of the elastic constants 
in units of 1010 d/cm2• 

300 0 K 80 0 K -l.2 °K 

63.5 68.6 68.7 
38.1 -!O.6 40.6 
11.3 12.7 12.9 
19.4 22 .4 22.5 
7.23 8.05 8.4-l 

24.5 

TABLE IV. Comparison of adiabatic linear and 
volume compressibilities. 

Echo technique 
cru'/ d 

18.16XIO-13 
6.28 

30.7 

• Calculated from adiabatic \·alues. 

Bridgman" 
cm'/ d 

16.13 X 1!r'3 
6.59 

29.31 

18 G. P. Alers and J. R. 0."eighbors, ] .• \ ppl. Phys . 28, l.5t4 
(JlJ5i) 

'" C. S. Barrett , .\ustralian J. Phys. (to be puhlished). 
~J H. D. ErLling, .\ nn. Physik 31, 136 (1939). 
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lllrnpliance constants Sjj determined many years ago 
In' Bridgman.~ The S jj determined by Bridgman are 
i:othermal " alues; the Cjj values reported here are 
:lliiabatic. " 'e have, th erefore, converted Bridgman's 
v;llues of Sij to isothermal Cij by inverting the matrix of 
Eq. (1), and thence to adiabatic Cij, by use of thermo
(II'namic formulas of the standard type.21 These values 
a~e also given in Table II. Finally, we have inverted ' 
our Cij matrix to obtain adiabatic Sij which \\'ithin ex
perimental error are the same as the isothermal values. 
It is to be noted that our value of the C,j obtained by 
inverting Bridgman's Sij are materially different from 
those reported by Betts et aU2 

We focus attention on the comparison of our adia
batic measured values of Cjj with the adiabatic values 
of the Cjj computed from Bridgman's static S iJ' Several 
large discrepancies, far larger than the combined 
estimated experimental errors, are apparent for Caa and 
(12. The origin of these discrepancies is difficult to 
ascertain. However, we note that Bridgman's values 
are only partially redundant, tha t several of his samples 
were reported as polycrystalline, and that the purity 
of his samples was dubious. We suspect a gross orienta
tional error~~ (perhaps concealed as an occluded grain 
or an unnoti ced twin) in one or more of his crystals. 
The discrepancy in the sign of Ci4 is only apparent and 
arises presumably because of a difference between 
Bridgman's unspecified ax is convention and that used 
here. 

A more rewarding comparison (see Table IV) is 
afforded by the agreement bet\\'een Bridgman's directly 
observed adiabatic volume compressibility and that cal
culated from our data: the former is 29.3X1Q-13 cm2/ d 
and the latter, 30.7XlO- 13 cm2/ d. The difference be
tween these two values is well within the combined 
experimental error. 

dll d12 d l 3 dI~ 

dll -d13 -d i4 

d33 0 

dH 

X ij = 

\Ye turn no\\' to the question of wh ether the Yoigt 
theory provides an adequate description of the elast ic 
properties of bismuth , In view of the numerous re
dundant checks, the answer must certainly be affirma
tive to within the accuracy of our experiments. H ow
ever, in view of the existing uncerta inty over the 
applicability of the Laval-Raman theory 'to various 
crystals, it might be worthwhile to set some quantitative 
limits on the permitted deyiations from the Voigt 
framework, at least, as applied to bi muth. 

Briefly, the difference bet\veen the Voigt and the 
Laval-Raman theory may be stated as follows. The 
Voigt theory considers the case of a static (or homo
geneous) strain in which the strain tensor may be 
separated into symmetric and antisymmetric com
ponents. The latter correspond to rigid body rotations 
which invoke no stress, The stress tensor may then be 
proved symmetric. In a dynamic and, consequently, 
inhomogeneous strain, the rotational part of the dis
placement has a spatial variation and. hence requires 
torques to sustain the changes in angular momentum. 
It is therefore impossible to demonstrate that the stress 
tensor ;s symmetric. In the most general case, one 
requires -1:5 constants to relate the stress to the strain, 
after imposing exactness conditions, rather than 21 
constants as in the Voigt theory. \Vooster has shown 
that this number is further reduced by compatibi lity re
quirements to 39 constants. This number of constants is 
further reduced by the requirements of crystal sym
metry so that for the simplest crystal classes (e.g., 
iso tropic materials), there is no diITerence between the 
two theories. 

Particularizing to the case of Bi, one finds that eight 
constants are required to specify the relation between 
stress components -'C; and strain components Xij . In 
fact? ·2.> 

dIS 0 0 0 

-diS 0 0 0 

0 0 0 0 

dH+dss 
0 0 0 

2 
~tii' (16) 

dH +ds5 
. dss dIS dIS 

2 

dS5 du d 14 

d66 d 66 

d66 

.. See ] . F. :\'ye, Physical Pruperlies of Crystals (Oxford l"niversity Press, Oxford, England, 1957), p. 283. 
22 D. D . Bet ts, ...... B. Bhat ion, and G. K. Horton, Phys. Rev . 10-4, 43 (t956). ' 
23 The discrepancy between the value for rl ~ prcviously rcported by one of us and that in Table II was owing to ·a "false" trigonal 

axis being mislabeled in a Laue pattern . 
2' Note that this matrix ·diffcrs slightly from that gil't!ll by Raman and Viswanathan ow:ng to a misprint in thcir article. We 

ha\'e used their notation which dilTers hom that of LeCorre. 
25 Y. LeCorre, Bull. Soc. franc. ~lines . Crist. 70, 80 ( l95i) . 
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The Christofel determinantal equation for the velocities 
of propagation along the .t; axis of bismuth is 

o o 

o =0, (1 i) 

o 
and that for propagation along the y axis of bismuth is 

o o 

o (18) 

o -d1o d •• -pv2 

These particular cases are quite simple and differ from 
the corresponding equations for the Voigt theory in 
that d~5 replaces CH and dli, replaces C14. 

From Eq. (17), we have 

d~~+d66 = pt'22 + pt'32 

and, from Eq. (18) 

d 11 + d •• = pV42 + pt'62
• 

Furthermore, dll=cu and d66 =C66' 

(19) 

(2tl j 

The sum, t·22+vl-'i.,~2, is 1.l-15±0.034X1010 cm2jscc\ 
which is to be compared with the directly observed r)\ 
1.153±0.017 X 1010 cm2/ sec2• It is clear that d4.1 and t! .~ 
cannot differ by more than 4%. Equation (20) do\: 
not yield as small an estimate for the possible differe'nc\: 
between d44 and do. owing to the large error introduced 
by the uncertainty in Cll. 
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Dislocations in Indented Magnesium Oxide Crystals 

A. S. KEH 
Edgar C. BailL Labur(J/ory jor Fltlldamell/al Research, Ulli/ed Siales Steel Corpura/iol~ 

Research Cell/er, J[ollroeo:ille, PWllsyh'allia 
(Received .-\pril 1-1, 1960; and in final form )'Iay 26, 1960) 

Dislocation rosette patterns produced by spherical and pyramidal indentors on the cleaved surfaces of 
magnesium oxide crystals were studied in detail. The three-dimensional arrangement of dislocation loops 
as deduced from the two-dimensional etching patterns is discussed. Cracks formed on (ltO} .o planes around 
pyramidal indentations are believed to be due to the interaction of dislocations on (ItO),; planes. The 
temperature dependence of hardness \\'as found to be related to the widening of dislocation bands, rather than 
to the distance of travel of leading dislocations. Some observations were also made on the pinning of dis
locations and recovery at elevated temperatures , and on the interaction of dislocations with grown-in 
subboundaries. 

INTRODUCTION 

T HE indentation hardness test is probably the 
simplest method of measuring the strength of 

materials. However, it is also the least understood test 
in terms of stress and strain distribution. Some progress 
has been made in analyzing the stress and strain distri
butions of several types of indentations using the con
tinuum theory of plasticity.l However, the results can
not be applied directly to crystalline solids having 
well-defined slip systems. 

In the last decade, a few attempts have been made 
to study the deformat ion mechanism associated with 
indentation. Tolansky and !\ickols~ studied several 
matrials by means of multiple-beam interference micros
copy. Churchman, Geach, and Winston3 investigated 

1 R . Hill, The J[ athellla/ical Theory oj Plasticity (Oxford Uni
versity Press, New York, 1950). 

% S. Tolansky and D . G. Nickols, (liature, 164, 113 (19-l9); Phil. 
)'Iag. 43, -110 (1952); ~ature 16-1, 8-!O (19-l9). 

J A. 1'. Churchman, G. A. Geach, and J. Winston, Proc. Roy . 
Soc. (London) A238 19-1 (1956). 

materials with a diamond structure. Smakula and Klein I 
used a prismatic punching method to study glide in 
ionic crystals. Yotava, Amelinckx, and Dekeyser; em
ployed an interferometric method to study indentation 
figures on cleavage faces of mica and NaC!. 

With the advancement of dislocation theory and tech
niques of revealing dislocations in crystals in the pa~t 
few years, it was thought possible to attain a better 
understanding of the deformation caused by indentation 
of a material with a simple crystalline structure. In 
this investigation, dislocation etching technique6•7 wits 
u ed to study the dislocation structures associated with 
yarious types of indentations at various temperaturc~ 

in magnesium oxide crystals. This type of study may 

-lA. Smakula and)1. W. Klein, Phys. Rev. 8~, 10-13 (1951). 
5 E. Votava, S. Amelinckx, and W. Dekeyser, Acta Met. 3, 89 

(1935). 
6 J. Washhurn, _\ . E. Gorman, and E. R . Parker, Trans. 

A. 1. ~1. E. 215, 230 (1959). 
1 R. J. Stokes, T . L. Johnston , and C. H . Li, Tran<. 

A. I. 11. E. 215, +37 ( 1959). 
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